Exploring the impact of metal-based nanofertilizers: A case study on sunflower pollen morphology and yield in field conditions

dc.contributor.authorĎurišová, Ľuba
dc.contributor.authorĎúranová, Hana
dc.contributor.authorKšiňan, Samuel
dc.contributor.authorErnst, Dávid
dc.contributor.authorŠebesta, Martin
dc.contributor.authorŽitniak Čurná, Veronika
dc.contributor.authorEliáš, Pavol
dc.contributor.authorQian, Yu
dc.contributor.authorStraka, Viktor
dc.contributor.authorFeng, Huan
dc.contributor.authorTomovičová, Lenka
dc.contributor.authorKotlárová, Nikola
dc.contributor.authorKratošová, Gabriela
dc.contributor.authorKolenčík, Marek
dc.date.accessioned2024-07-19T10:05:27Z
dc.date.available2024-07-19T10:05:27Z
dc.date.issued2023
dc.description.abstractOn a daily basis, a wide range of materials including inorganic nanoparticles (NPs) inadvertently find their way into the environment. Meanwhile, intentionally used NPs, such as the new generation of nanofertilizers (NFs) are designed to enhance agronomic production. However, their physicochemical properties and not-so-well understood effects raise potential risks to the plant reproductive cycle, specifically pollen development, a subject largely absent in academic research. Even slight contamination, deformation, or aberration of pollen could have enormous impacts on the ecosystem. Thus, our objective was to evaluate the influence of various metal-based NPs on sunflower pollen morphology and its yield. Nano-formulations were applied during the 2019-2021 agronomic seasons on two sunflower hybrids, Neostar and Edison, in Doln & aacute; Malanta, near Nitra, Slovak Republic. Pollen morphology findings indicated that conventional ZnSO4 had the most positive impact on the size of pollen grains compared to ZnO-NPs, Fe3O4-NPs, and the NP-free control. Gold-NPs on SiO2 mesoporous silica (AuSi-NPs) showed a statistically insignificant impact, while the use of TiO2-NPs in agriculture remained a topic of debate. Surprisingly, pollen characteristics did not fully correspond to crop yields. Despite causing a reduction in pollen grain size, the TiO2-NPs consistently showed the highest yield compared to other variants. Employing low concentrations of NFs did not notably alter pollen morphology, reinforcing our commitment to eco-friendly, precise, and sustainable agriculture.cs
dc.description.firstpageart. no. 2922cs
dc.description.issue12cs
dc.description.sourceWeb of Sciencecs
dc.description.volume13cs
dc.identifier.citationAgronomy. 2023, vol. 13, issue 12, art. no. 2922.cs
dc.identifier.doi10.3390/agronomy13122922
dc.identifier.issn2073-4395
dc.identifier.urihttp://hdl.handle.net/10084/154855
dc.identifier.wos001132292900001
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesAgronomycs
dc.relation.urihttps://doi.org/10.3390/agronomy13122922cs
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectagronomycs
dc.subjectfoliar applicationcs
dc.subjectenvironmental impactcs
dc.subjectsunflower pollen morphologycs
dc.subjectyieldcs
dc.subjectnanofertilizers and nanoparticlescs
dc.subjectTiO2-NPscs
dc.subjectcase studycs
dc.titleExploring the impact of metal-based nanofertilizers: A case study on sunflower pollen morphology and yield in field conditionscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
2073-4395-2023v13i12an2922.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: