Entropy-based air quality monitoring network optimization using NINP and Bayesian maximum entropy

dc.contributor.authorHaddadi, Ali
dc.contributor.authorNikoo, Mohammad Reza
dc.contributor.authorNematollahi, Banafsheh
dc.contributor.authorAl-Rawas, Ghazi
dc.contributor.authorAl-Wardy, Malik
dc.contributor.authorToloo, Mehdi
dc.contributor.authorGandomi, Amir H.
dc.date.accessioned2024-02-21T06:56:45Z
dc.date.available2024-02-21T06:56:45Z
dc.date.issued2023
dc.description.abstractEffectual air quality monitoring network (AQMN) design plays a prominent role in environmental engineering. An optimal AQMN design should consider stations’ mutual information and system uncertainties for effectiveness. This study develops a novel optimization model using a non-dominated sorting genetic algorithm II (NSGA-II). The Bayesian maximum entropy (BME) method generates potential stations as the input of a framework based on the transinformation entropy (TE) method to maximize the coverage and minimize the probability of selecting stations. Also, the fuzzy degree of membership and the nonlinear interval number programming (NINP) approaches are used to survey the uncertainty of the joint information. To obtain the best Pareto optimal solution of the AQMN characterization, a robust ranking technique, called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) approach, is utilized to select the most appropriate AQMN properties. This methodology is applied to Los Angeles, Long Beach, and Anaheim in California, USA. Results suggest using 4, 4, and 5 stations to monitor CO, NO2, and ozone, respectively; however, implementing this recommendation reduces coverage by 3.75, 3.75, and 3 times for CO, NO2, and ozone, respectively. On the positive side, this substantially decreases TE for CO, NO2, and ozone concentrations by 8.25, 5.86, and 4.75 times, respectively.cs
dc.description.firstpage84110cs
dc.description.issue35cs
dc.description.lastpage84125cs
dc.description.sourceWeb of Sciencecs
dc.description.volume30cs
dc.identifier.citationEnvironmental Science and Pollution Research. 2023, vol. 30, issue 35, p. 84110-84125.cs
dc.identifier.doi10.1007/s11356-023-28270-w
dc.identifier.issn0944-1344
dc.identifier.issn1614-7499
dc.identifier.urihttp://hdl.handle.net/10084/152221
dc.identifier.wos001020055900011
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesEnvironmental Science and Pollution Researchcs
dc.relation.urihttps://doi.org/10.1007/s11356-023-28270-wcs
dc.rightsCopyright © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Naturecs
dc.subjectair qualitycs
dc.subjectBayesian maximum entropy (BME)cs
dc.subjectfuzzy set theorycs
dc.subjectmulti-criteria decision-making (MCDM)cs
dc.subjectnonlinear interval number programming (NINP)cs
dc.subjecttransinformation entropy (TE)cs
dc.titleEntropy-based air quality monitoring network optimization using NINP and Bayesian maximum entropycs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: