Supervised learning of photovoltaic power plant output prediction models
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
České vysoké učení technické v Praze. Fakulta dopravní
Location
Signature
Abstract
This article presents an application of evolutionary fuzzy rules to the modeling and prediction of power output of a real-world Photovoltaic Power Plant (PVPP). The method is compared to artificial neural networks and support vector regression that were also used to build predictors in order to analyse a time-series like data describing the production of the PVPP. The models of the PVPP are created using different supervised machine learning methods in order to forecast the short-term output of the power plant and compare the accuracy of the prediction.
Description
Subject(s)
Citation
Neural Network World. 2013, vol. 23, issue 4, p. 321-338.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost Katedry elektroenergetiky / Publications of Department of Electrical Power Engineering (410)
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost Katedry elektroenergetiky / Publications of Department of Electrical Power Engineering (410)
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals