Adaptive energy management strategy for solar energy harvesting IoT nodes by evolutionary fuzzy rules

dc.contributor.authorPrauzek, Michal
dc.contributor.authorKrömer, Pavel
dc.contributor.authorMikuš, Miroslav
dc.contributor.authorKonečný, Jaromír
dc.date.accessioned2025-01-31T11:44:14Z
dc.date.available2025-01-31T11:44:14Z
dc.date.issued2024
dc.description.abstractThis study explores the integration of genetic programming (GP) and fuzzy logic to enhance control strategies for Internet of Things (IoT) nodes across varied locations. It is introduced a novel methodology for designing a fuzzy-based energy management controller that autonomously determines the most suitable controller structure and inputs. This approach is evaluated using a solar harvesting IoT model that leverages historical solar irradiance data, highlighting the methodology’s potential for diverse geographical applications and compatibility with low-performance microcontrollers. The findings demonstrate that the integration of GP with designed fitness function enables the dynamic learning and adaptation of control strategies, optimizing system behavior based on historical data. The experimental model showcases an ability to efficiently use historical datasets to derive optimal control strategies, with the fitness metric indicating consistent improvement throughout the learning phase. The results indicate that useful control strategies learned at a certain location may outperform a locally-trained control strategies and can be successfully re-applied in other locations.cs
dc.description.firstpageart. no. 101197cs
dc.description.sourceWeb of Sciencecs
dc.description.volume26cs
dc.identifier.citationInternet of Things. 2024, vol. 26, art. no. 101197.cs
dc.identifier.doi10.1016/j.iot.2024.101197
dc.identifier.issn2543-1536
dc.identifier.issn2542-6605
dc.identifier.urihttp://hdl.handle.net/10084/155725
dc.identifier.wos001237074400001
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesInternet of Thingscs
dc.relation.urihttps://doi.org/10.1016/j.iot.2024.101197cs
dc.rights© 2024 The Author(s). Published by Elsevier B.V.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/cs
dc.subjectcloud learningcs
dc.subjectenergy harvestingcs
dc.subjectenergy managementcs
dc.subjectevolutionary fuzzy rulescs
dc.subjectInternet-of-Thingscs
dc.titleAdaptive energy management strategy for solar energy harvesting IoT nodes by evolutionary fuzzy rulescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
2543-1536-2024v26an101197.pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: