Adaptive energy management strategy for solar energy harvesting IoT nodes by evolutionary fuzzy rules
| dc.contributor.author | Prauzek, Michal | |
| dc.contributor.author | Krömer, Pavel | |
| dc.contributor.author | Mikuš, Miroslav | |
| dc.contributor.author | Konečný, Jaromír | |
| dc.date.accessioned | 2025-01-31T11:44:14Z | |
| dc.date.available | 2025-01-31T11:44:14Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | This study explores the integration of genetic programming (GP) and fuzzy logic to enhance control strategies for Internet of Things (IoT) nodes across varied locations. It is introduced a novel methodology for designing a fuzzy-based energy management controller that autonomously determines the most suitable controller structure and inputs. This approach is evaluated using a solar harvesting IoT model that leverages historical solar irradiance data, highlighting the methodology’s potential for diverse geographical applications and compatibility with low-performance microcontrollers. The findings demonstrate that the integration of GP with designed fitness function enables the dynamic learning and adaptation of control strategies, optimizing system behavior based on historical data. The experimental model showcases an ability to efficiently use historical datasets to derive optimal control strategies, with the fitness metric indicating consistent improvement throughout the learning phase. The results indicate that useful control strategies learned at a certain location may outperform a locally-trained control strategies and can be successfully re-applied in other locations. | cs |
| dc.description.firstpage | art. no. 101197 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 26 | cs |
| dc.identifier.citation | Internet of Things. 2024, vol. 26, art. no. 101197. | cs |
| dc.identifier.doi | 10.1016/j.iot.2024.101197 | |
| dc.identifier.issn | 2543-1536 | |
| dc.identifier.issn | 2542-6605 | |
| dc.identifier.uri | http://hdl.handle.net/10084/155725 | |
| dc.identifier.wos | 001237074400001 | |
| dc.language.iso | en | cs |
| dc.publisher | Elsevier | cs |
| dc.relation.ispartofseries | Internet of Things | cs |
| dc.relation.uri | https://doi.org/10.1016/j.iot.2024.101197 | cs |
| dc.rights | © 2024 The Author(s). Published by Elsevier B.V. | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | cs |
| dc.subject | cloud learning | cs |
| dc.subject | energy harvesting | cs |
| dc.subject | energy management | cs |
| dc.subject | evolutionary fuzzy rules | cs |
| dc.subject | Internet-of-Things | cs |
| dc.title | Adaptive energy management strategy for solar energy harvesting IoT nodes by evolutionary fuzzy rules | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460)
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460)
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals