On the Zener-Hollomon parameter, multi-layer perceptron and multivariate polynomials in the struggle for the peak and steady-state description
Loading...
Downloads
1
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
License
Abstract
Description of flow stress evolution, specifically an approximation of a set of flow curves acquired under a wide range of thermomechanical conditions, of various materials is often solved via so-called flow stress models. Some of these models are associated with a description of significant flow-curve coordinates. It is clear, the more accurate the coordinates description, the more accurate the assembled model. In the presented research, Zener-Hollomon-based relations, multi-layer perceptron networks and multivariate polynomials are employed to describe the peak and steady-state coordinates of an Invar 36 flow curve dataset. Comparison of the utilized methods in the case of the studied alloy has showed that the suitable description is given by the multivariate polynomials although the Zener-Hollomon and perceptron networks also offer valuable results.
Description
Citation
Metals. 2020, vol. 10, issue 11, art. no. 1413.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry tváření materiálu / Publications of Department of Materials Forming (633)
Publikační činnost RMTVC (606)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry tváření materiálu / Publications of Department of Materials Forming (633)
Publikační činnost RMTVC (606)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals