Deep reinforcement learning based optimization of automated guided vehicle time and energy consumption in a container terminal

dc.contributor.authorDrungilas, Darius
dc.contributor.authorKurmis, Mindaugas
dc.contributor.authorSenulis, Audrius
dc.contributor.authorLukosius, Zydrunas
dc.contributor.authorAndziulis, Arūnas
dc.contributor.authorJanuteniene, Jolanta
dc.contributor.authorBogdevičius, Marijonas
dc.contributor.authorJankūnas, Valdas
dc.contributor.authorVozňák, Miroslav
dc.date.accessioned2024-01-19T08:32:16Z
dc.date.available2024-01-19T08:32:16Z
dc.date.issued2023
dc.description.abstractThe energy efficiency of port container terminal equipment and the reduction of CO2 emissions are among one of the biggest challenges facing every seaport in the world. The article pre sents the modeling of the container transportation process in a terminal from the quay crane to the stack using battery-powered Automated Guided Vehicle (AGV) to estimate the energy consump tion parameters. An AGV speed control algorithm based on Deep Reinforcement Learning (DRL) is proposed to optimize the energy consumption of container transportation. The results obtained and compared with real transportation measurements showed that the proposed DRL based approach dynamically changing the driving speed of the AGV reduces energy consumption by 4.6%. The obtained results of the research provide the prerequisites for further research in order to find optimal strategies for autonomous vehicle movement including context awareness and infor mation sharing with other vehicles in the terminal.cs
dc.description.firstpage397cs
dc.description.lastpage407cs
dc.description.sourceWeb of Sciencecs
dc.description.volume67cs
dc.identifier.citationAlexandria Engineering Journal. 2023, vol. 67, p. 397-407.cs
dc.identifier.doi10.1016/j.aej.2022.12.057
dc.identifier.issn1110-0168
dc.identifier.issn2090-2670
dc.identifier.urihttp://hdl.handle.net/10084/151926
dc.identifier.wos000918221700001
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesAlexandria Engineering Journalcs
dc.relation.urihttps://doi.org/10.1016/j.aej.2022.12.057cs
dc.rights© 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectautomated guided vehicle (AGV)cs
dc.subjectcontainer terminalcs
dc.subjectenergy consumptioncs
dc.subjectdeep reinforcement learningcs
dc.subjectmodelingcs
dc.subjectoptimizationcs
dc.titleDeep reinforcement learning based optimization of automated guided vehicle time and energy consumption in a container terminalcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1110-0168-2023v67p397.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: