Security–reliability analysis of AF full-duplex relay networks using self-energy recycling and deep neural networks
| dc.contributor.author | Nguyen, Tan N. | |
| dc.contributor.author | Minh, Bui Vu | |
| dc.contributor.author | Tran, Dinh-Hieu | |
| dc.contributor.author | Le, Thanh-Lanh | |
| dc.contributor.author | Le, Anh-Tu | |
| dc.contributor.author | Nguyen, Quang-Sang | |
| dc.contributor.author | Lee, Byung Moo | |
| dc.date.accessioned | 2024-03-19T10:56:23Z | |
| dc.date.available | 2024-03-19T10:56:23Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | This paper investigates the security-reliability of simultaneous wireless information and power transfer (SWIPT)-assisted amplify-and-forward (AF) full-duplex (FD) relay networks. In practice, an AF-FD relay harvests energy from the source (S) using the power-splitting (PS) protocol. We propose an analysis of the related reliability and security by deriving closed-form formulas for outage probability (OP) and intercept probability (IP). The next contribution of this research is an asymptotic analysis of OP and IP, which was generated to obtain more insight into important system parameters. We validate the analytical formulas and analyze the impact on the key system parameters using Monte Carlo simulations. Finally, we propose a deep learning network (DNN) with minimal computation complexity and great accuracy for OP and IP predictions. The effects of the system’s primary parameters on OP and IP are examined and described, along with the numerical data. | cs |
| dc.description.firstpage | art. no. 7618 | cs |
| dc.description.issue | 17 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 23 | cs |
| dc.identifier.citation | Sensors. 2023, vol. 23, issue 17, art. no. 7618. | cs |
| dc.identifier.doi | 10.3390/s23177618 | |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.uri | http://hdl.handle.net/10084/152373 | |
| dc.identifier.wos | 001061144100001 | |
| dc.language.iso | en | cs |
| dc.publisher | MDPI | cs |
| dc.relation.ispartofseries | Sensors | cs |
| dc.relation.uri | https://doi.org/10.3390/s23177618 | cs |
| dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | physical layer security (PLS) | cs |
| dc.subject | self-energy recycling | cs |
| dc.subject | full duplex (FD) | cs |
| dc.subject | outage probability (OP) | cs |
| dc.subject | intercept probability (IP) | cs |
| dc.subject | deep learning network (DNN) | cs |
| dc.title | Security–reliability analysis of AF full-duplex relay networks using self-energy recycling and deep neural networks | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Original bundle
1 - 1 out of 1 results
Loading...
- Name:
- 1424-8220-2023v23i17an7618.pdf
- Size:
- 876.24 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 out of 1 results
Loading...
- Name:
- license.txt
- Size:
- 718 B
- Format:
- Item-specific license agreed upon to submission
- Description:
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Děkanátu FEI / Publications of the Dean's Office of the Faculty of Electrical Engineering and Computer Science (400)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Děkanátu FEI / Publications of the Dean's Office of the Faculty of Electrical Engineering and Computer Science (400)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals