A weather forecast model accuracy analysis and ECMWF enhancement proposal by neural network
Loading...
Downloads
4
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Location
Signature
License
Abstract
This paper presents a neural network approach for weather forecast improvement. Predicted parameters, such as air temperature or precipitation, play a crucial role not only in the transportation sector but they also influence people's everyday activities. Numerical weather models require real measured data for the correct forecast run. This data is obtained from automatic weather stations by intelligent sensors. Sensor data collection and its processing is a necessity for finding the optimal weather conditions estimation. The European Centre for Medium-Range Weather Forecasts (ECMWF) model serves as the main base for medium-range predictions among the European countries. This model is capable of providing forecast up to 10 days with horizontal resolution of 9 km. Although ECMWF is currently the global weather system with the highest horizontal resolution, this resolution is still two times worse than the one offered by limited area (regional) numeric models (e.g., ALADIN that is used in many European and north African countries). They use global forecasting model and sensor-based weather monitoring network as the input parameters (global atmospheric situation at regional model geographic boundaries, description of atmospheric condition in numerical form), and because the analysed area is much smaller (typically one country), computing power allows them to use even higher resolution for key meteorological parameters prediction. However, the forecast data obtained from regional models are available only for a specific country, and end-users cannot find them all in one place. Furthermore, not all members provide open access to these data. Since the ECMWF model is commercial, several web services offer it free of charge. Additionally, because this model delivers forecast prediction for the whole of Europe (and for the whole world, too), this attitude is more user-friendly and attractive for potential customers. Therefore, the proposed novel hybrid method based on machine learning is capable of increasing ECMWF forecast outputs accuracy to the same level as limited area models provide, and it can deliver a more accurate forecast in real-time.
Description
Subject(s)
ALADIN, ECMWF, neural networks, weather forecast models
Citation
Sensors. 2019, vol. 19, issue 23, art. no. 5144.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Publikační činnost Katedry telekomunikačních technologií / Publications of Department of Telecommunications (440)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Publikační činnost Katedry telekomunikačních technologií / Publications of Department of Telecommunications (440)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals