Ethanol dehydrogenation over copper-silica catalysts: From sub-nanometer clusters to 15 nm large particles

Abstract

Non-oxidative ethanol dehydrogenation is a renewable source of acetaldehyde and hydrogen. The reaction is often catalyzed by supported copper catalysts with high selectivity. The activity and long-term stability depend on many factors, including particle size, choice of support, doping, etc. Herein, we present four different synthetic pathways to prepare Cu/SiO2 catalysts (∼2.5 wt % Cu) with varying copper distribution: hydrolytic sol–gel (sub-nanometer clusters), dry impregnation (A̅ = 3.4 nm; σ = 0.9 nm and particles up to 32 nm), strong electrostatic adsorption (A̅ = 3.1 nm; σ = 0.6 nm), and solvothermal hot injection followed by Cu particle deposition (A̅ = 4.0 nm; σ = 0.8 nm). All materials were characterized by ICP-OES, XPS, N2 physisorption, STEM-EDS, XRD, RFC N2O, and H2-TPR and tested in ethanol dehydrogenation from 185 to 325 °C. The sample prepared by hydrolytic sol–gel exhibited high Cu dispersion and, accordingly, the highest catalytic activity. Its acetaldehyde productivity (2.79 g g–1 h–1 at 255 °C) outperforms most of the Cu-based catalysts reported in the literature, but it lacks stability and tends to deactivate over time. On the other hand, the sample prepared by simple and cost-effective dry impregnation, despite having Cu particles of various sizes, was still highly active (2.42 g g–1 h–1 acetaldehyde at 255 °C). Importantly, it was the most stable sample out of the studied materials. The characterization of the spent catalyst confirmed its exceptional properties: it showed the lowest extent of both coking and particle sintering.

Description

Subject(s)

ethanol dehydrogenation, copper, nanoparticles, acetaldehyde, sol−gel, dry impregnation

Citation

ACS Sustainable Chemistry & Engineering. 2023, vol. 11, issue 30, p. 10980-10992.