One-dimensional photonic crystal for Bloch surface waves and radiation modes-based sensing
Loading...
Downloads
6
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Optical Society of America
Location
Signature
License
Abstract
We report on a one-dimensional photonic crystal (1DPhC) represented by a multilayer structure used for a surface plasmon-like sensing based on Bloch surface waves and radiation modes employing a structure comprising a glass substrate and four bilayers of TiO2/SiO2 with a termination layer of TiO2. We model the reflectance responses in the Kretschmann configuration with a coupling prism made of BK7 glass and express the reflectances for both (s and p) polarizations in the spectral domain for various angles of incidence to show that a sharp dip associated with the Bloch surface wave (BSW) excitation is obtained in p polarization when an external medium (analyte) is air. For s-polarized wave BSW is not excited and a shallow dip associated with the guided mode excitation is obtained for a liquid analyte (water). For decreasing angle of incidence, the dip depth is substantially increased, and resonance thus obtained is comparable in magnitude with resonance commonly exhibited by SPR-based sensors. In addition, we revealed that the resonances in s-polarization are obtained for other analytes. The surface plasmon-like sensing concept was verified experimentally in the Kretschmann configuration for the guided mode transformed into the radiation mode with a negative and constant sensitivity of -169 nm/RIU, and a detection limit of 5.9 x 10(-5) RIU.
Description
Subject(s)
Citation
Optical Materials Express. 2019, vol. 9, issue 10, p. 4009-4022.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Centra nanotechnologií / Publications of Nanotechnology Centre (9360)
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry fyziky / Department of Physics (480)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Centra nanotechnologií / Publications of Nanotechnology Centre (9360)
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry fyziky / Department of Physics (480)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals