Portfolio optimization with asset preselection using data envelopment analysis

dc.contributor.authorHosseinzadeh, Mohammad Mehdi
dc.contributor.authorLozza, Sergio Ortobelli
dc.contributor.authorLotfi, Farhad Hosseinzadeh
dc.contributor.authorMoriggia, Vittorio
dc.date.accessioned2022-09-29T08:34:25Z
dc.date.available2022-09-29T08:34:25Z
dc.date.issued2022
dc.description.abstractThis paper uses data envelopment analysis (DEA) approach as a nonparametric efficiency analysis tool to preselect efficient assets in large-scale portfolio problems. Thus, we reduce the dimensionality of portfolio problems, considering multiple asset performance criteria in a linear DEA model. We first introduce several reward/risk criteria that are typically used in portfolio literature to identify features of financial returns. Secondly, we suggest some DEA input/output sets for preselecting efficient assets in a large-scale portfolio framework. Then, we evaluate the impact of the preselected assets in different portfolio optimization strategies. In particular, we propose an ex-post empirical analysis based on two alternative datasets: the components of S &P500 and the Fama and French 100 portfolio formed on size and book to market. According to this empirical analysis we observe better performances of the DEA preselection than the classic PCA factor models for large scale portfolio selection problems. Moreover, the proposed model outperform the S &P500 index and the strategy based on the fully diversified portfolio.cs
dc.description.sourceWeb of Sciencecs
dc.identifier.citationCentral European Journal Of Operations Research. 2022.cs
dc.identifier.doi10.1007/s10100-022-00808-2
dc.identifier.issn1435-246X
dc.identifier.issn1613-9178
dc.identifier.urihttp://hdl.handle.net/10084/148653
dc.identifier.wos000824988100001
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesCentral European Journal of Operations Researchcs
dc.relation.urihttps://doi.org/10.1007/s10100-022-00808-2cs
dc.rightsCopyright © 2022, The Author(s)cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectportfolio theorycs
dc.subjectdata envelopment analysiscs
dc.subjectefficiencycs
dc.subjectasset performance criteriacs
dc.titlePortfolio optimization with asset preselection using data envelopment analysiscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1435-246X-2022.pdf
Size:
661.96 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: