Shape optimization and subdivision surface based approach to solving 3D Bernoulli problems
Loading...
Downloads
0
Date issued
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Location
Signature
Abstract
In the paper we consider a treatment of Bernoulli type shape optimization problems in three dimensions by the combination of the boundary element method and the hierarchical algorithm based on the subdivision surfaces. After proving the existence of the solution on the continuous level we discretize the free part of the surface by a hierarchy of control meshes allowing to separate the mesh necessary for the numerical analysis and the choice of design parameters. During the optimization procedure the mesh is updated starting from its coarse representation and refined by adding design variables on finer levels. This approach serves as a globalization strategy and prevents geometry oscillations without any need for remeshing. We present numerical experiments demonstrating the capabilities of the proposed algorithm.
Description
Subject(s)
Bernoulli problem, shape optimization, subdivision surfaces, boundary element method
Citation
Computers & Mathematics with Applications. 2019, vol. 78, issue 9, special issue, p. 2911-2932.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals