AggreProt: a web server for predicting and engineering aggregation prone regions in proteins

dc.contributor.authorPlanas-Iglesias, Joan
dc.contributor.authorBorko, Simeon
dc.contributor.authorSwiatkowski, Jan
dc.contributor.authorEliáš, Matěj
dc.contributor.authorHavlásek, Martin
dc.contributor.authorSalamon, Ondřej
dc.contributor.authorGrakova, Ekaterina
dc.contributor.authorKunka, Antonín
dc.contributor.authorMartinovič, Tomáš
dc.contributor.authorDamborský, Jiří
dc.contributor.authorMartinovič, Jan
dc.contributor.authorBednář, David
dc.date.accessioned2025-03-11T08:01:43Z
dc.date.available2025-03-11T08:01:43Z
dc.date.issued2024
dc.description.abstractRecombinant proteins play pivotal roles in numerous applications including industrial biocatalysts or therapeutics. Despite the recent progress in computational protein structure prediction, protein solubility and reduced aggregation propensity remain challenging attributes to design. Identification of aggregation-prone regions is essential for understanding misfolding diseases or designing efficient protein-based technologies, and as such has a great socio-economic impact. Here, we introduce AggreProt, a user-friendly webserver that automatically exploits an ensemble of deep neural networks to predict aggregation-prone regions (APRs) in protein sequences. Trained on experimentally evaluated hexapeptides, AggreProt compares to or outperforms state-of-the-art algorithms on two independent benchmark datasets. The server provides per-residue aggregation profiles along with information on solvent accessibility and transmembrane propensity within an intuitive interface with interactive sequence and structure viewers for comprehensive analysis. We demonstrate AggreProt efficacy in predicting differential aggregation behaviours in proteins on several use cases, which emphasize its potential for guiding protein engineering strategies towards decreased aggregation propensity and improved solubility. The webserver is freely available and accessible at https://loschmidt.chemi.muni.cz/aggreprot/.cs
dc.description.firstpageW159cs
dc.description.issueW1cs
dc.description.lastpageW169cs
dc.description.sourceWeb of Sciencecs
dc.description.volume52cs
dc.identifier.citationNucleic Acids Research . 2024, vol. 52, issue W1, p. W159-W169.cs
dc.identifier.doi10.1093/nar/gkae420
dc.identifier.issn0305-1048
dc.identifier.issn1362-4962
dc.identifier.urihttp://hdl.handle.net/10084/155800
dc.identifier.wos001233323700001
dc.language.isoencs
dc.publisherOxford University Presscs
dc.relation.ispartofseriesNucleic Acids Researchcs
dc.relation.urihttps://doi.org/10.1093/nar/gkae420cs
dc.rightsCopyright © 2024, © The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.titleAggreProt: a web server for predicting and engineering aggregation prone regions in proteinscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
0305-1048-2024v52iw1pw159.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: