High-frequency magnon excitation due to femtosecond spin-transfer torques

dc.contributor.authorRitzmann, Ulrike
dc.contributor.authorBaláž, Pavel
dc.contributor.authorMaldonado, Pablo
dc.contributor.authorCarva, Karel
dc.contributor.authorOppeneer, Peter M.
dc.date.accessioned2020-06-22T09:07:42Z
dc.date.available2020-06-22T09:07:42Z
dc.date.issued2020
dc.description.abstractFemtosecond laser pulses can induce ultrafast demagnetization as well as generate bursts of hot-electron spin currents. In trilayer spin valves consisting of two metallic ferromagnetic layers separated by a nonmagnetic one, hot-electron spin currents excited by an ultrashort laser pulse propagate from the first ferromagnetic layer through the spacer, reaching the second magnetic layer. When the magnetizations of the two magnetic layers are noncollinear, this spin current exerts a torque on magnetic moments in the second ferromagnet. Since this torque is acting only within the subpicosecond timescale, it excites coherent high-frequency magnons, as recently demonstrated in experiments. Here, we calculate the temporal shape of the hot-electron spin currents using the superdiffusive transport model and simulate the response of the magnetic system to the resulting ultrashort spin-transfer torque pulse by means of atomistic spin-dynamics simulations. Our results confirm that the acting spin-current pulse is short enough to excite magnons with frequencies beyond 1 THz, a frequency range out of reach for current-induced spin-transfer torques. We demonstrate the formation of thickness-dependent standing spin waves during the first picoseconds after laser excitation. In addition, we vary the penetration depth of the spin-transfer torque to reveal its influence on the excited magnons. Our simulations clearly show a suppression effect of magnons with short wavelengths already for penetration depths in the range of 1 nm, confirming experimental findings reporting penetration depths below 2 nm.cs
dc.description.firstpageart. no. 174427cs
dc.description.issue17cs
dc.description.sourceWeb of Sciencecs
dc.description.volume101cs
dc.identifier.citationPhysical Review B. 2020, vol. 101, issue 17, art. no. 174427.cs
dc.identifier.doi10.1103/PhysRevB.101.174427
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/10084/139557
dc.identifier.wos000533492400003
dc.language.isoencs
dc.publisherAmerican Physical Societycs
dc.relation.ispartofseriesPhysical Review Bcs
dc.relation.urihttp://www.doi.org/10.1103/PhysRevB.101.174427cs
dc.rights© 2020 American Physical Societycs
dc.rights.accessopenAccesscs
dc.titleHigh-frequency magnon excitation due to femtosecond spin-transfer torquescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
2469-9950-2020v101i17an174427.pdf
Size:
803.18 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: