Vertex-antimagic labelings of regular graphs

dc.contributor.authorAhmad, Ali
dc.contributor.authorAli, Kashf
dc.contributor.authorBača, Martin
dc.contributor.authorKovář, Petr
dc.contributor.authorSemaničová-Feňovčíková, Andrea
dc.date.accessioned2012-11-07T14:42:09Z
dc.date.available2012-11-07T14:42:09Z
dc.date.issued2012
dc.description.abstractLet G = (V,E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V (G) ∪ E(G) onto the set of consecutive integers 1, 2, …, p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f(x) assigned to the vertex x together with all values f(xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices. In this paper, we study the properties of such labelings and examine their existence for 2r-regular graphs when the difference d is 0, 1, …, r + 1.cs
dc.description.firstpage1865cs
dc.description.issue9cs
dc.description.lastpage1874cs
dc.description.sourceWeb of Sciencecs
dc.description.volume28cs
dc.identifier.citationActa Mathematica Sinica, English Series. 2012, vol. 28, no. 9, s. 1865-1874.cs
dc.identifier.doi10.1007/s10114-012-1018-y
dc.identifier.issn1439-8516
dc.identifier.issn1439-7617
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.urihttp://hdl.handle.net/10084/95681
dc.identifier.wos000307427100011
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesActa Mathematica Sinica, English Seriescs
dc.relation.urihttps://doi.org/10.1007/s10114-012-1018-ycs
dc.subjectsuper vertex-antimagic total labelingcs
dc.subjectvertex-antimagic edge labelingcs
dc.subjectregular graphcs
dc.subject05C78cs
dc.titleVertex-antimagic labelings of regular graphscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: