Van Krevelen diagrams based on machine learning visualize feedstock-product relationships in thermal conversion processes

dc.contributor.authorWang, Shule
dc.contributor.authorWang, Yiying
dc.contributor.authorShi, Ziyi
dc.contributor.authorSun, Kang
dc.contributor.authorWen, Yuming
dc.contributor.authorNiedzwiecki, Lukasz
dc.contributor.authorPan, Ruming
dc.contributor.authorXu, Yongdong
dc.contributor.authorZaini, Ilman Nuran
dc.contributor.authorJagodzińska, Katarzyna
dc.contributor.authorAragon-Briceño, Christian
dc.contributor.authorTang, Chuchu
dc.contributor.authorOnsree, Thossaporn
dc.contributor.authorTippayawong, Nakorn
dc.contributor.authorPawlak-Kruczek, Halina
dc.contributor.authorJönsson, Pär Göran
dc.contributor.authorYang, Weihong
dc.contributor.authorJiang, Jianchun
dc.contributor.authorKawi, Sibudjing
dc.contributor.authorWang, Chi-Hwa
dc.date.accessioned2024-05-02T10:45:57Z
dc.date.available2024-05-02T10:45:57Z
dc.date.issued2023
dc.description.abstractFeedstock properties play a crucial role in thermal conversion processes, where under standing the influence of these properties on treatment performance is essential for opti mizing both feedstock selection and the overall process. In this study, a series of van Krevelen diagrams were generated to illustrate the impact of H/C and O/C ratios of feedstock on the products obtained from six commonly used thermal conversion techniques: torrefaction, hydrothermal carbonization, hydrothermal liquefaction, hydrothermal gasification, pyrolysis, and gasification. Machine learning methods were employed, utilizing data, methods, and results from corresponding studies in this field. Furthermore, the reliability of the constructed van Krevelen diagrams was analyzed to assess their dependability. The van Krevelen dia grams developed in this work systematically provide visual representations of the relation ships between feedstock and products in thermal conversion processes, thereby aiding in optimizing the selection of feedstock and the choice of thermal conversion technique.cs
dc.description.firstpageart. no. 273cs
dc.description.issue1cs
dc.description.sourceWeb of Sciencecs
dc.description.volume6cs
dc.identifier.citationCommunications Chemistry. 2023, vol. 6, issue 1, art. no. 273.cs
dc.identifier.doi10.1038/s42004-023-01077-z
dc.identifier.issn2399-3669
dc.identifier.urihttp://hdl.handle.net/10084/152596
dc.identifier.wos001122502600001
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesCommunications Chemistrycs
dc.relation.urihttps://doi.org/10.1038/s42004-023-01077-zcs
dc.rightsCopyright © 2023, The Author(s)cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.titleVan Krevelen diagrams based on machine learning visualize feedstock-product relationships in thermal conversion processescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
2399-3669-2023v6i1an273.pdf
Size:
2.38 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: