OPF solution for a real Czech urban meshed distribution network using a genetic algorithm
| dc.contributor.author | Foltyn, Ladislav | |
| dc.contributor.author | Vysocký, Jan | |
| dc.contributor.author | Prettico, Giuseppe | |
| dc.contributor.author | Běloch, Michal | |
| dc.contributor.author | Praks, Pavel | |
| dc.contributor.author | Fulli, Gianluca | |
| dc.date.accessioned | 2021-07-21T07:21:26Z | |
| dc.date.available | 2021-07-21T07:21:26Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Electrical distribution networks are facing an energy transition which entails an increase of decentralised renewable energy sources and electric vehicles. The resulting temporal and spatial uncertainty in the generation/load patterns challenges the operations of an infrastructure not designed for such a transition. In this situation, Optimal Power Flow methods can play a key role in identifying system weak points and supporting efficient management of the electrical networks, including the distribution level. In this work, to support distribution system operators' decision-making process, we aim at attaining a quasi-optimal solution in the shortest time possible in an electrical network experiencing a large growth of distributed energy sources. We propose an optimisation method based on a modified version of a genetic algorithm and the Python pandapower package. The method is tested on a model of a real urban meshed network of a large Czech city. The optimisation method minimises the total operating costs of the distribution network by controlling selected network components and parameters, namely the transformer tap changers and the active power demand at consumption nodes. The results of our method are compared with the exact solution showing that a close-to-optimal solution of the observed problem can be reached in a relatively short time. | cs |
| dc.description.firstpage | art. no. 100437 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 26 | cs |
| dc.identifier.citation | Sustainable Energy, Grids & Networks. 2021, vol. 26, art. no. 100437. | cs |
| dc.identifier.doi | 10.1016/j.segan.2021.100437 | |
| dc.identifier.issn | 2352-4677 | |
| dc.identifier.uri | http://hdl.handle.net/10084/145091 | |
| dc.identifier.wos | 000645076400018 | |
| dc.language.iso | en | cs |
| dc.publisher | Elsevier | cs |
| dc.relation.ispartofseries | Sustainable Energy, Grids & Networks | cs |
| dc.relation.uri | https://doi.org/10.1016/j.segan.2021.100437 | cs |
| dc.rights | ©2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | genetic algorithms | cs |
| dc.subject | optimisation | cs |
| dc.subject | electrical distribution network | cs |
| dc.subject | pandapower | cs |
| dc.subject | active power demand | cs |
| dc.subject | transformer taps control | cs |
| dc.title | OPF solution for a real Czech urban meshed distribution network using a genetic algorithm | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Centra energetických jednotek pro využití netradičních zdrojů energie (9370)
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Centra energetických jednotek pro využití netradičních zdrojů energie (9370)
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals