Spintronic terahertz emitters with integrated metallic terahertz cavities

dc.contributor.authorMičica, Martin
dc.contributor.authorWright, Adrien
dc.contributor.authorKoleják, Pierre
dc.contributor.authorLezier, Geoffrey
dc.contributor.authorPostava, Kamil
dc.contributor.authorHawecker, Jacques
dc.contributor.authorDe Vetter, Anna
dc.contributor.authorTignon, Jerome
dc.contributor.authorMangeney, Juliette
dc.contributor.authorJaffres, Henri
dc.contributor.authorLebrun, Romain
dc.contributor.authorTiercelin, Nicolas
dc.contributor.authorVanwolleghem, Mathias
dc.contributor.authorDhillon, Sukhdeep
dc.date.accessioned2024-10-31T14:04:20Z
dc.date.available2024-10-31T14:04:20Z
dc.date.issued2024
dc.description.abstractSpintronic terahertz emitters (STEs), based on optical excitation of nanometer thick ferromagnetic/heavy metal (FM/HM) heterojunctions, have become important sources for the generation of terahertz (THz) pulses. However, the efficiency of the optical-to-THz conversion remains limited. Although optical techniques have been developed to enhance the optical absorption, no investigations have studied the application of THz cavities. Here, to enhance the THz efficiency of STEs in a selected THz spectral range, FM/HM structures are realized on ultra-thin sapphire layers with metallic mirrors to create lambda/4 THz resonant cavities. THz emission time domain spectroscopy of these STE/sapphire/mirror heterostructures, with sapphire thicknesses ranging from 110 mu m to 25 mu m, shows enhancement of the emitted THz field that fits the lambda/4 cavity resonance with up to a doubling of the field in the spectrum, and in agreement with temporal simulations of the emitted THz pulse. By taking advantage of birefringent materials, we further show the potential of control of the polarization state of the emitted THz pulse. This work shows the potential of enhancing and engineering THz emission from STEs using THz cavities that can be controlled over a broad spectral range, which can be easily combined with optical cavities.cs
dc.description.firstpage1899cs
dc.description.issue10cs
dc.description.lastpage1907cs
dc.description.sourceWeb of Sciencecs
dc.description.volume13cs
dc.identifier.citationNanophotonics. 2024, vol. 13, issue 10, p. 1899-1907.cs
dc.identifier.doi10.1515/nanoph-2023-0807
dc.identifier.issn2192-8606
dc.identifier.issn2192-8614
dc.identifier.urihttp://hdl.handle.net/10084/155236
dc.identifier.wos001178542000001
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofseriesNanophotonicscs
dc.relation.urihttps://doi.org/10.1515/nanoph-2023-0807cs
dc.rights© 2024 the author(s), published by De Gruyter.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectTHz spintronic emitterscs
dc.subjectTHz time domain spectroscopycs
dc.subjectmetallic resonatorcs
dc.titleSpintronic terahertz emitters with integrated metallic terahertz cavitiescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
2192-8606-2024v13i10p1899.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: