Patient-adapted and inter-patient ecg classification using neural network and gradient boosting

dc.contributor.authorZaorálek, Lukáš
dc.contributor.authorPlatoš, Jan
dc.contributor.authorSnášel, Václav
dc.date.accessioned2018-09-03T08:04:41Z
dc.date.available2018-09-03T08:04:41Z
dc.date.issued2018
dc.description.abstractHeart disease diagnosis is an important non-invasive technique. Therefore, there exists an effort to increase the accuracy of arrhythmia classification based on ECG signals. In this work, we present a novel approach of heart arrhythmia detection. The model consists of two parts. The first part extracts important features from raw ECG signal using Auto-Encoder Neural Network. Extracted features obtained by Auto-Encoder represent an input for the second part of the model, the Gradient Boosting and Feedforward Neural Network classifiers. For comparison purposes, we evaluated our approach by using MIT-BIH ECG database and also following recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) for ECG class labeling. We divided our experiment into two scenarios. The first scenario represents the classification task for the patient-adapted paradigm and the second one was dedicated to the inter-patient paradigm. We compared the measured results to the state-of-the-art methods and it shows that our method outperforms the state-of-the art methods in the Ventricular Ectopic (VEB) class for both paradigms and Supraventricular Ectopic (SVEB) class in the inter-patient paradigm.cs
dc.description.firstpage241cs
dc.description.issue3cs
dc.description.lastpage254cs
dc.description.sourceWeb of Sciencecs
dc.description.volume28cs
dc.format.extent507791 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationNeural Network World. 2018, vol. 28, issue 3, p. 241-254.cs
dc.identifier.doi10.14311/NNW.2018.28.015
dc.identifier.issn1210-0552
dc.identifier.issn2336-4335
dc.identifier.urihttp://hdl.handle.net/10084/131437
dc.identifier.wos000440210500004
dc.language.isoencs
dc.publisherČVUT, Fakulta dopravní; VŠB-TU Ostrava, Fakulta elektrotechniky a informatikycs
dc.relation.ispartofseriesNeural Network Worldcs
dc.relation.urihttp://doi.org/10.14311/NNW.2018.28.015cs
dc.rights.accessopenAccesscs
dc.subjectECGcs
dc.subjectAAMIcs
dc.subjectVEBcs
dc.subjectSVEBcs
dc.subjectGBMcs
dc.subjectANNcs
dc.titlePatient-adapted and inter-patient ecg classification using neural network and gradient boostingcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1210-0552-2018v28i3p241.pdf
Size:
495.89 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: