Photocatalytic H-2 evolution, CO2 reduction, and NOx oxidation by highly exfoliated g-C3N4
Loading...
Downloads
7
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Location
Signature
License
Abstract
g-C3N4, with specific surface area up to 513 m(2)/g, was prepared via three successive thermal treatments at 550 degrees C in air with gradual precursor mass decrease. The obtained bulk and exfoliated (1ex, 2ex and 3ex) g-C3N4 were characterized and tested as photocatalysts for H-2 production, CO2 reduction and NOx oxidation. The exfoliated samples demonstrated graphene-like morphology with detached (2ex) and sponge-like framework (3ex) of layers. The surface area increased drastically from 20 m(2)/g (bulk) to 513 m(2)/g (3ex). The band gap (E-g) increased gradually from 2.70 to 3.04 eV. Superoxide radicals (O-center dot(2)-) were mainly formed under UV and visible light. In comparison to the bulk, the exfoliated g-C3N4 demonstrated significant increase in H-2 evolution (similar to 6 times), CO2 reduction (similar to 3 times) and NOx oxidation (similar to 4 times) under UV light. Despite the E-g widening, the photocatalytic performance of the exfoliated g-C3N4 under visible light was improved too. The results were related to the large surface area and low e(-)-h(+) recombination. The highly exfoliated g-C3N4 demonstrated selectivity towards H-2 evolution reactions.
Description
Subject(s)
g-C3N4 exfoliation, photocatalysis, H2 evolution, CO2 reduction, NOx oxidation
Citation
Catalysts. 2020, vol. 10, issue 10, art. no. 1147.