Differential evolution for the optimization of low-discrepancy generalized Halton sequences

dc.contributor.authorKrömer, Pavel
dc.contributor.authorPlatoš, Jan
dc.contributor.authorSnášel, Václav
dc.date.accessioned2020-05-20T08:14:12Z
dc.date.available2020-05-20T08:14:12Z
dc.date.issued2020
dc.description.abstractHalton sequences are d-dimensional quasirandom sequences that fill the d-dimensional hyperspace in a uniform way. They can be used in a variety of applications such as multidimensional integration, uniform sampling, and, e.g., quasi-Monte Carlo simulations. Generalized Halton sequences improve the space-filling properties of original Halton sequences in higher dimensions by digit scrambling. In this work, an evolutionary optimization algorithm, the differential evolution, is used to optimize scrambling permutations of a cl-dimensional generalized Halton sequence so that the discrepancy of the generated point set is minimized.cs
dc.description.firstpageart. no. UNSP 100649cs
dc.description.sourceWeb of Sciencecs
dc.description.volume54cs
dc.identifier.citationSwarm and Evolutionary Computation. 2020, vol. 54, art. no. UNSP 100649.cs
dc.identifier.doi10.1016/j.swevo.2020.100649
dc.identifier.issn2210-6502
dc.identifier.issn2210-6510
dc.identifier.urihttp://hdl.handle.net/10084/139497
dc.identifier.wos000528484400009
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesSwarm and Evolutionary Computationcs
dc.relation.urihttp://doi.org/10.1016/j.swevo.2020.100649cs
dc.rights© 2020 Elsevier B.V. All rights reserved.cs
dc.subjectdifferential evolutioncs
dc.subjectcombinatorial optimizationcs
dc.subjectqasirandom sequencescs
dc.subjectdiscrepancycs
dc.titleDifferential evolution for the optimization of low-discrepancy generalized Halton sequencescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: