A comparative analysis of machine learning models in prediction of mortar compressive strength

Loading...
Thumbnail Image

Downloads

7

Date issued

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Location

Signature

License

Abstract

Predicting the mechanical properties of cement-based mortars is essential in understanding the life and functioning of structures. Machine learning (ML) algorithms in this regard can be especially useful in prediction scenarios. In this paper, a comprehensive comparison of nine ML algorithms, i.e., linear regression (LR), random forest regression (RFR), support vector regression (SVR), AdaBoost regression (ABR), multi-layer perceptron (MLP), gradient boosting regression (GBR), decision tree regression (DT), hist gradient boosting regression (hGBR) and XGBoost regression (XGB), is carried out. A multi-attribute decision making method called TOPSIS (technique for order of preference by similarity to ideal solution) is used to select the best ML metamodel. A large dataset on cement-based mortars consisting of 424 sample points is used. The compressive strength of cement-based mortars is predicted based on six input parameters, i.e., the age of specimen (AS), the cement grade (CG), the metakaolin-to-total-binder ratio (MK/B), the water-to-binder ratio (W/B), the superplasticizer-to-binder ratio (SP) and the binder-to-sand ratio (B/S). XGBoost regression is found to be the best ML metamodel while simple metamodels like linear regression (LR) are found to be insufficient in handling the non-linearity in the process. This mapping of the compressive strength of mortars using ML techniques will be helpful for practitioners and researchers in identifying suitable mortar mixes.

Description

Subject(s)

machine learning, predictive models, compressive strength, regression, TOPSIS

Citation

Processes. 2022, vol. 10, issue 7, art. no. 1387.