Individualization of a vectorcardiographic model by a particle swarm optimization
Loading...
Downloads
0
Date issued
Authors
Vožda, Michal
Jurek, František
Černý, Martin
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Location
Signature
Abstract
This paper presents the application of a bio-inspired method for optimizing a lifelike vectorcardiographic (VCG) model. During the model estimation, a Particle Swarm Optimization (PSO) seeks the optimal combination of all parameters that maximize the correlation coefficient (r) and minimize the Mean Squared Error (MSE) between the synthetic and directly measured VCG leads. The proposed method was tested on 52 different VCG records annotated as a healthy control (HC) from PTB database. 156 models were individualized without any previous analysis of the waves of the original records. The PSO method automatically provides very realistic models with a correlation coefficient r > 0.995 and MSE < 0.0005 mV2 for 152 of the 156 VCG signals.
Description
Subject(s)
Citation
Biomedical Signal Processing and Control. 2015, vol. 22, p. 65-73.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals