Improved pose estimation of Aruco tags using a novel 3D placement strategy

dc.contributor.authorOščádal, Petr
dc.contributor.authorHeczko, Dominik
dc.contributor.authorVysocký, Aleš
dc.contributor.authorMlotek, Jakub
dc.contributor.authorNovák, Petr
dc.contributor.authorVirgala, Ivan
dc.contributor.authorSukop, Marek
dc.contributor.authorBobovský, Zdenko
dc.date.accessioned2020-10-26T13:02:45Z
dc.date.available2020-10-26T13:02:45Z
dc.date.issued2020
dc.description.abstractThis paper extends the topic of monocular pose estimation of an object using Aruco tags imaged by RGB cameras. The accuracy of the Open CV Camera calibration and Aruco pose estimation pipelines is tested in detail by performing standardized tests with multiple Intel Realsense D435 Cameras. Analyzing the results led to a way to significantly improve the performance of Aruco tag localization which involved designing a 3D Aruco board, which is a set of Aruco tags placed at an angle to each other, and developing a library to combine the pose data from the individual tags for both higher accuracy and stability.cs
dc.description.firstpageart. no. 4825cs
dc.description.issue17cs
dc.description.sourceWeb of Sciencecs
dc.description.volume20cs
dc.identifier.citationSensors. 2020, vol. 20, issue 17, art. no. 4825.cs
dc.identifier.doi10.3390/s20174825
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10084/142369
dc.identifier.wos000569736900001
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSensorscs
dc.relation.urihttp://doi.org/10.3390/s20174825cs
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectArucocs
dc.subjectpose estimationcs
dc.subject3D grid boardcs
dc.subjectprecisioncs
dc.titleImproved pose estimation of Aruco tags using a novel 3D placement strategycs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1424-8220-2020v20i17an4825.pdf
Size:
61.73 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: