Experimentally verified physical model of ferromagnetic microparticles separation in magnetic gradient inside a set of steel spheres
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Location
Signature
Abstract
In this work, we describe the model of magnetic Fe2O3 submicroparticles separation during transit of their water dispersion through separation pipe based on matrix of closely organized steel spheres. The fundamental idea originates from detailed field analysis of gradient magnetic field in spheres contacts ambient generated by external magnetic field and its influence on flowing submicroparticles. During the model derivation, the fundamental physical principles have been applied to minimise the influence of the phenomenological members. The determined result formula related to the separation model determines exit dispersion particles concentration and equivalent form of device efficiency. In its fundamental shape, this formula is the function of nine independent physical parameters. In the frame of its experimental verification, most of these parameters have been fixed. The experimental data have been correlated with our model prediction, where only the following three independent variables have been implemented: separation tube length, particles size, and external magnetic field intensity. The theory and experiment comparison have shown that the coefficient of determination R-2 is over 0.997. At the same time, the described theoretical model specifies the approach for optimal parameters selection to achieve the requested separation efficiency in concrete conditions.
Description
Subject(s)
magnetic separation model, magnetic gradient, magnetostatic force, submicron particles, ferromagnetic spheres
Citation
Separation and Purification Technology. 2020, vol. 239, art. no. 116460.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost Centra nanotechnologií / Publications of Nanotechnology Centre (9360)
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost Centra nanotechnologií / Publications of Nanotechnology Centre (9360)
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals