The metrizability problem for Lorentz-invariant affine connections

dc.contributor.authorUrban, Zbyněk
dc.contributor.authorVolná, Jana
dc.date.accessioned2016-11-02T08:47:24Z
dc.date.available2016-11-02T08:47:24Z
dc.date.issued2016
dc.description.abstractThe invariant metrizability problem for affine connections on a manifold, formulated by Tanaka and Krupka for connected Lie groups actions, is considered in the particular cases of Lorentz and Poincaré (inhomogeneous Lorentz) groups. Conditions under which an affine connection on the open submanifold R×(R 3 \{(0,0,0)}) of the Euclidean space R 4 coincides with the Levi-Civita connection of some SO(3,1), respectively (R 4 × s SO(3,1)) -invariant metric field are studied. We give complete description of metrizable Lorentz-invariant connections. Explicit solutions (metric fields) of the invariant metrizability equations are found and their properties are discussed. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0219887816501103cs
dc.description.firstpageart. no. 1650110cs
dc.description.issue8cs
dc.description.sourceWeb of Sciencecs
dc.description.volume13cs
dc.identifier.citationInternational Journal of Geometric Methods in Modern Physics. 2016, vol. 13, issue 8, art. no. 1650110.cs
dc.identifier.doi10.1142/S0219887816501103
dc.identifier.issn0219-8878
dc.identifier.issn1793-697
dc.identifier.urihttp://hdl.handle.net/10084/114169
dc.identifier.wos000383979300015
dc.language.isoencs
dc.publisherWorld Scientific Publishingcs
dc.relation.ispartofseriesInternational Journal of Geometric Methods in Modern Physicscs
dc.relation.urihttp://dx.doi.org/10.1142/S0219887816501103cs
dc.subjectaffine connectioncs
dc.subjectmetric fieldcs
dc.subjectmetrizability problemcs
dc.subjectG-invariancecs
dc.subjectLorentz groupcs
dc.subjectPoincaré groupcs
dc.titleThe metrizability problem for Lorentz-invariant affine connectionscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: