Parylene micropillars coated with thermally grown SiO2

Loading...
Thumbnail Image

Downloads

0

Date issued

Journal Title

Journal ISSN

Volume Title

Publisher

AIP Publishing

Location

Signature

Abstract

The modification of surface properties frequently requires the binding of suitable compounds to the original surface. Silanes or thiols can be directly covalently bonded to either Si-based materials or Au, thus ruling out polymers. Here, we show the utilization of a layer of SiO(2)with a thickness of a few nanometers that serves as a cross-linker between polymers and silanes providing covalent bonding to the surface. We deposited a polymer onto a thermally oxidized microstructured Si surface followed by subsequent Si removal. We demonstrated a Si-based nanotechnology fabrication method that can be generally used to modify the surface properties of practically any polymer via SiO(2)cross-linking. This can produce any topology, including microstructures, nanostructures, or composite microstructure/nanostructures terminating in different shapes, since all the steps involving polymer deposition are conducted at room temperature after the Si surface has been thermally oxidized. This technique opens a broad field of new applications for polymers in microstructures and nanostructures that have stable water surface contact angle values with the contact angle set by demand for gecko-mimicking structures or lotus leaf inspired surfaces.

Description

Subject(s)

Citation

Journal of Vacuum Science & Technology B. 2020, vol. 38, issue 6, art. no. 063001.