Influence of bowl-like nanostructures on the efficiency and module power of black silicon solar cells

Loading...
Thumbnail Image

Downloads

0

Date issued

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Location

Signature

Abstract

In this work, black multi-crystal silicon (Mc-Si) solar cells with bowl-like nanotextured surfaces were successfully fabricated by a metal-assisted chemical etching (MACE) method. Defect removal etching processes of various durations were used to form bowl-like nanostructures of three sizes on the wafer surface. Overall, a low depth and large diameter of bowl-like structure in nanotextured surfaces is demonstrated to be helpful in reducing surface recombination and improving the cell and module performance. The average cell module power of the bowl-like nanotextured surfaces with an average bowl diameter 680 nm is clearly higher by 1.51 W, 1.46 W, and 1.26 W than for nanotextured surfaces with bowl diameter 460 nm in the 18.8%, 18.9%, and 19.0% efficiency bins. A maximum cell efficiency of 19.17% and module power of 279.74 W were obtained using our MACE process in an industrial mass production line. The techniques presented in this paper can be used for the mass production of diamond wire sawing Mc-Si solar cells and meet the requirements of high efficiency and low cost in the photovoltaic industry.

Description

Subject(s)

black silicon, nanotextured surface, efficiency, module power

Citation

Solar Energy. 2019, vol. 189, p. 67-73.