On the existence and properties of three types of solutions of singular IVPs
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Bolyai Institute, University of Szeged and the Hungarian Academy of Sciences
Abstract
The paper studies the singular initial value problem
(p(t)u
0
(t))0 + q(t)f(u(t)) = 0, t > 0, u(0) = u0 ∈ [L0, L] , u
0
(0) = 0.
Here, f ∈ C(R), f(L0) = f(0) = f(L) = 0, L0 < 0 < L and x f(x) > 0 for x ∈
(L0, 0) ∪ (0, L). Further, p, q ∈ C [ 0, ∞ ) are positive on (0, ∞) and p(0) = 0. The integral
R 1
0
ds
p(s) may be divergent which yields the time singularity at t = 0. The paper describes
a set of all solutions of the given problem. Existence results and properties of oscillatory
solutions and increasing solutions are derived. By means of these results, the existence
of an increasing solution with u(∞) = L (a homoclinic solution) playing an important
role in applications is proved.
Description
Subject(s)
Citation
Electronic Journal of Qualitative Theory of Differential Equations. 2015, no. 29, p. 1-25.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science  / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry matematiky a deskriptivní geometrie / Publications of Department of Mathematics and Descriptive Geometry (714)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry matematiky a deskriptivní geometrie / Publications of Department of Mathematics and Descriptive Geometry (714)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals