Wind energy potential assessment based on wind direction modelling and machine learning
| dc.contributor.author | Krömer, Pavel | |
| dc.contributor.author | Mišák, Stanislav | |
| dc.contributor.author | Stuchlý, Jindřich | |
| dc.contributor.author | Platoš, Jan | |
| dc.date.accessioned | 2017-03-08T13:12:16Z | |
| dc.date.available | 2017-03-08T13:12:16Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | Precise wind energy potential assessment is vital for wind energy gener- ation and planning and development of new wind power plants. This work proposes and evaluates a novel two-stage method for location-specific wind energy potential assessment. It combines accurate statistical modelling of annual wind direction distribution in a given location with supervised machine learning of efficient esti- mators that can approximate energy efficiency coefficients from the parameters of optimized statistical wind direction models. The statistical models are optimized using differential evolution and energy efficiency is approximated by evolutionary fuzzy rules. | cs |
| dc.description.firstpage | 519 | cs |
| dc.description.issue | 6 | cs |
| dc.description.lastpage | 538 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 26 | cs |
| dc.identifier.citation | Neural Network World. 2016, vol. 26, issue 6, p. 519-538. | cs |
| dc.identifier.doi | 10.14311/nnw.2016.26.030 | |
| dc.identifier.issn | 1210-0552 | |
| dc.identifier.uri | http://hdl.handle.net/10084/116905 | |
| dc.identifier.wos | 000392283000001 | |
| dc.language.iso | en | cs |
| dc.publisher | Czech Technical University in Prague, Faculty of Transportation Sciences | cs |
| dc.relation.ispartofseries | Neural Network World | cs |
| dc.relation.uri | https://doi.org/10.14311/nnw.2016.26.030 | cs |
| dc.rights | © CTU FTS 2016 | cs |
| dc.subject | differential evolution | cs |
| dc.subject | wind direction modelling | cs |
| dc.subject | evolutionary fuzzy rules | cs |
| dc.subject | wind energy potential assessment | cs |
| dc.subject | estimation | cs |
| dc.subject | optimization | cs |
| dc.title | Wind energy potential assessment based on wind direction modelling and machine learning | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
Files
License bundle
1 - 1 out of 1 results
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost Katedry elektroenergetiky / Publications of Department of Electrical Power Engineering (410)
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost Katedry elektroenergetiky / Publications of Department of Electrical Power Engineering (410)
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals