Wind energy potential assessment based on wind direction modelling and machine learning

dc.contributor.authorKrömer, Pavel
dc.contributor.authorMišák, Stanislav
dc.contributor.authorStuchlý, Jindřich
dc.contributor.authorPlatoš, Jan
dc.date.accessioned2017-03-08T13:12:16Z
dc.date.available2017-03-08T13:12:16Z
dc.date.issued2016
dc.description.abstractPrecise wind energy potential assessment is vital for wind energy gener- ation and planning and development of new wind power plants. This work proposes and evaluates a novel two-stage method for location-specific wind energy potential assessment. It combines accurate statistical modelling of annual wind direction distribution in a given location with supervised machine learning of efficient esti- mators that can approximate energy efficiency coefficients from the parameters of optimized statistical wind direction models. The statistical models are optimized using differential evolution and energy efficiency is approximated by evolutionary fuzzy rules.cs
dc.description.firstpage519cs
dc.description.issue6cs
dc.description.lastpage538cs
dc.description.sourceWeb of Sciencecs
dc.description.volume26cs
dc.identifier.citationNeural Network World. 2016, vol. 26, issue 6, p. 519-538.cs
dc.identifier.doi10.14311/nnw.2016.26.030
dc.identifier.issn1210-0552
dc.identifier.urihttp://hdl.handle.net/10084/116905
dc.identifier.wos000392283000001
dc.language.isoencs
dc.publisherCzech Technical University in Prague, Faculty of Transportation Sciencescs
dc.relation.ispartofseriesNeural Network Worldcs
dc.relation.urihttps://doi.org/10.14311/nnw.2016.26.030cs
dc.rights© CTU FTS 2016cs
dc.subjectdifferential evolutioncs
dc.subjectwind direction modellingcs
dc.subjectevolutionary fuzzy rulescs
dc.subjectwind energy potential assessmentcs
dc.subjectestimationcs
dc.subjectoptimizationcs
dc.titleWind energy potential assessment based on wind direction modelling and machine learningcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: