Proportioning with second-order information for model predictive control
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis
Location
Signature
Abstract
We propose an algorithm for the effective solution of quadratic programming (QP) problems arising from model predictive control (MPC). MPC is a modern multivariable control method which gives the solution for a QP problem at each sample instant. Our algorithm combines the active-set strategy with the proportioning test to decide when to leave the actual active set. For the minimization in the face, we use a direct solver implemented by the Cholesky factors updates. The performance of the algorithm is illustrated by numerical experiments, and the results are compared with the state-of-the-art solvers on benchmarks from MPC.
Description
Subject(s)
quadratic programming, model predictive control, active-set strategy
Citation
Optimization Methods and Software. 2017, vol. 32, issue 3, p. 436-454.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals