Antimicrobial bionanocomposite-from precursors to the functional material in one simple step

dc.contributor.authorKonvičková, Zuzana
dc.contributor.authorSchröfel, Adam
dc.contributor.authorKolenčík, Marek
dc.contributor.authorDědková, Kateřina
dc.contributor.authorPeikertová, Pavlína
dc.contributor.authorŽídek, Martin
dc.contributor.authorSeidlerová, Jana
dc.contributor.authorKratošová, Gabriela
dc.date.accessioned2017-01-18T07:56:07Z
dc.date.available2017-01-18T07:56:07Z
dc.date.issued2016
dc.description.abstractThe mesoporous biosilica with unique 3D hierarchy in/organic functional groups is attractive material in terms of interfacial phenomena, and its high biocompatibility accelerates development in biomedical devices. In addition, their benefits also play a fundamental role in antimicrobial assessment. We hypothesize that the Diadesmis gallica biosilica surface acts as a biotemplate for AgCl and Au nanoparticle (NP) biosynthesis. Moreover, it exhibits antibacterial action human pathogenic bacteria. Nanoparticle biosynthesis was performed via a pure environmental-friendly, static, bottom-up in vitro regime. Minimal inhibitory concentrations evaluated systems with bionanocomposites for antibacterial efficiency in temporal time-dose-dependency. TEM and XRD depicts a biosilica "local sphere" which affects formation, stabilization and encapsulation of crystalline Au (9-27 nm) and AgCl (3-51 nm) NPs in one simple step. FTIR analysis reveals various functional in/organic groups, including Si-OH and polyamides. While both metal-bionanoparticles have analogical spherical shape with determined aggregation, ICP-AES analysis determined more effective 5.29 wt% Au NP formation than 1 wt% AgCl NPs. MIC analysis confirms that bionanocomposite with AgCl by concentration 0.014 mg/mL has the most effective antibacterial system for gram-positive and gram-negative bacteria strains. Although dual effect of Au/AgCl NP bionanocomposite has almost analogical influence on gram-positive bacteria, the synergic-antagonistic effect is irrelevant in this instance.cs
dc.description.firstpageart. no. 368cs
dc.description.issue12cs
dc.description.sourceWeb of Sciencecs
dc.description.volume18cs
dc.identifier.citationJournal of Nanoparticle Research. 2016, vol. 18, issue 12, art. no. 368.cs
dc.identifier.doi10.1007/s11051-016-3664-y
dc.identifier.issn1388-0764
dc.identifier.issn1572-896X
dc.identifier.urihttp://hdl.handle.net/10084/116782
dc.identifier.wos000390056000002
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesJournal of Nanoparticle Researchcs
dc.relation.urihttp://dx.doi.org/10.1007/s11051-016-3664-ycs
dc.rights© Springer Science+Business Media Dordrecht 2016cs
dc.subjectDiadesmis gallicacs
dc.subjectdiatomscs
dc.subjectAgCl nanoparticlescs
dc.subjectAu nanoparticlescs
dc.subjectantibacterialcs
dc.subjectminimum inhibitory concentrationcs
dc.subjecthealth effectscs
dc.titleAntimicrobial bionanocomposite-from precursors to the functional material in one simple stepcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: