Live event detection for people's safety using NLP and deep learning
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
License
Abstract
Today, humans pose the greatest threat to society by getting involved in robbery, assault, or homicide activities. Such circumstances threaten the people working alone at night in remote areas especially women. Any such kind of threat in real time is always associated with a sound/noise which may be used for an early detection. Numerous existing measures are available but none of them sounds efficient due to lack of accuracy, delays in exact prediction of threat. Hence a novel software-based prototype is developed to detect threats from a person's surrounding sound/noise and automatically alert the registered contacts of victims by sending email, SMS, WhatsApp messages through their smartphones without any other hardware components. Audio signals from Kaggle dataset are visualized, analyzed using Exploratory Data Analytics (EDA) techniques. By feeding EDA outcomes into various Deep Learning models: Long short-term memory (LSTM), Convolutional Neural Networks (CNN) yields accuracy of 96.6% in classifying the audio-events.
Description
Subject(s)
Citation
IEEE Access. 2024, vol. 12, p. 6455-6472.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry automatizační techniky a řízení / Publications of Department of Control Systems and Instrumentation (352)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry automatizační techniky a řízení / Publications of Department of Control Systems and Instrumentation (352)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals