An optimal algorithm for minimization of quadratic functions with bounded spectrum subject to separable convex inequality and linear equality constraints
Loading...
Downloads
0
Date issued
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Society for Industrial and Applied Mathematics
Location
Není ve fondu ÚK
Signature
Abstract
An, in a sense, optimal algorithm for minimization of quadratic functions subject to separable convex inequality and linear equality constraints is presented. Its unique feature is an error bound in terms of bounds on the spectrum of the Hessian of the cost function. If applied to a class of problems with the spectrum of the Hessians in a given positive interval, the algorithm can find approximate solutions in a uniformly bounded number of simple iterations, such as matrix-vector multiplications. Moreover, if the class of problems admits a sparse representation of the Hessian, it simply follows that the cost of the solution is proportional to the number of unknowns. Theoretical results are illustrated by numerical experiments.
Description
Subject(s)
quadratic function, separable convex constraints, active set, augmented Lagrangian, gradient projections, convergence rate, optimality
Citation
SIAM Journal on Optimization. 2010, vol. 20, issue 6, p. 2913-2938.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Publikační činnost Katedry matematiky a deskriptivní geometrie / Publications of Department of Mathematics and Descriptive Geometry (714)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Publikační činnost Katedry matematiky a deskriptivní geometrie / Publications of Department of Mathematics and Descriptive Geometry (714)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals