A novel hybrid intelligent system for multi-objective machine parameter optimization

dc.contributor.authorRedondo, Raquel
dc.contributor.authorSedano, Javier
dc.contributor.authorVera, Vicente
dc.contributor.authorHernando, Beatriz
dc.contributor.authorCorchado, Emilio
dc.date.accessioned2015-02-18T13:09:20Z
dc.date.available2015-02-18T13:09:20Z
dc.date.issued2015
dc.description.abstractThis multidisciplinary research presents a novel hybrid intelligent system to perform a multi-objective industrial parameter optimization process. The intelligent system is based on the application of evolutionary and neural computation in conjunction with identification systems, which makes it possible to optimize the implementation conditions in the manufacturing process of high precision parts, including finishing precision, while saving time, financial costs and/or energy. Empirical verification of the proposed hybrid intelligent system is performed in a real industrial domain, where a case study is defined and analyzed. The experiments are carried out based on real dental milling processes using a high precision machining centre with five axes, requiring high finishing precision of measures in micrometers with a large number of process factors to analyze. The results of the experiments which validate the performance of the proposed approach are presented in this study.cs
dc.description.firstpage31cs
dc.description.issue1cs
dc.description.lastpage44cs
dc.description.sourceWeb of Sciencecs
dc.description.volume18cs
dc.identifier.citationPattern Analysis and Applications. 2015, vol. 18, issue 1, p. 31-44.cs
dc.identifier.doi10.1007/s10044-013-0345-7
dc.identifier.issn1433-7541
dc.identifier.issn1433-755X
dc.identifier.urihttp://hdl.handle.net/10084/106429
dc.identifier.wos000347834800002
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesPattern Analysis and Applicationscs
dc.relation.urihttp://dx.doi.org/10.1007/s10044-013-0345-7cs
dc.titleA novel hybrid intelligent system for multi-objective machine parameter optimizationcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: