A computational investigation of the steady state vibrations of unbalanced flexibly supported rigid rotors damped by short magnetorheological squeeze film dampers
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
ASME
Abstract
Unbalance is the principal cause of excitation of lateral vibrations of rotors and generation of the forces transmitted through the rotor supports to the foundations. These effects can be significantly reduced if damping devices are added to the constraint elements. To achieve their optimum performance, their damping effect must be controllable. The possibility of controlling the damping force is offered by magnetorheological squeeze film dampers. This article presents an original investigation of the dynamical behavior of a rigid flexibly supported rotor loaded by its unbalance and equipped with two short magnetorheological squeeze film dampers. In the computational model, the rotor is considered as absolutely rigid and the dampers are represented by force couplings. The pressure distribution in the lubricating layer is governed by a modified Reynolds equation adapted for Bingham material, which is used to model the magnetorheological fluid. To obtain the steady state solution of the equations of motion, a collocation method is employed. Stability of the periodic vibrations is evaluated by means of the Floquet theory. The proposed approach to study the behavior of rigid rotors damped by semi-active squeeze film magnetorheological dampers and the developed efficient computational methods to calculate the system steady state response and to evaluate its stability represent new contributions of this article.
Description
Subject(s)
Citation
Journal of Vibration and Acoustics. 2013, vol. 135, issue 6, art. no. 064505.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry mechaniky / Publications of Department of Mechanics (337)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry mechaniky / Publications of Department of Mechanics (337)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals