Intelligent systems for power load forecasting: A study review
| dc.contributor.author | Jahan, Ibrahim Salem | |
| dc.contributor.author | Snášel, Václav | |
| dc.contributor.author | Mišák, Stanislav | |
| dc.date.accessioned | 2021-01-31T09:55:41Z | |
| dc.date.available | 2021-01-31T09:55:41Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | The study of power load forecasting is gaining greater significance nowadays, particularly with the use and integration of renewable power sources and external power stations. Power forecasting is an important task in the planning, control, and operation of utility power systems. In addition, load forecasting (LF) aims to estimate the power or energy needed to meet the required power or energy to supply the specific load. In this article, we introduce, review and compare different power load forecasting techniques. Our goal is to help in the process of explaining the problem of power load forecasting via brief descriptions of the proposed methods applied in the last decade. The study reviews previous research that deals with the design of intelligent systems for power forecasting using various methods. The methods are organized into five groups-Artificial Neural Network (ANN), Support Vector Regression, Decision Tree (DT), Linear Regression (LR), and Fuzzy Sets (FS). This way, the review provides a clear concept of power load forecasting for the purposes of future research and study. | cs |
| dc.description.firstpage | art. no. 6105 | cs |
| dc.description.issue | 22 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 13 | cs |
| dc.identifier.citation | Energies. 2020, vol. 13, issue 22, art. no. 6105. | cs |
| dc.identifier.doi | 10.3390/en13226105 | |
| dc.identifier.issn | 1996-1073 | |
| dc.identifier.uri | http://hdl.handle.net/10084/142613 | |
| dc.identifier.wos | 000594093900001 | |
| dc.language.iso | en | cs |
| dc.publisher | MDPI | cs |
| dc.relation.ispartofseries | Energies | cs |
| dc.relation.uri | http://doi.org/10.3390/en13226105 | cs |
| dc.rights | © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | renewable energy sources | cs |
| dc.subject | load forecasting | cs |
| dc.subject | smart system | cs |
| dc.subject | weather data | cs |
| dc.subject | off-grid system | cs |
| dc.title | Intelligent systems for power load forecasting: A study review | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Original bundle
1 - 1 out of 1 results
Loading...
- Name:
- 1996-1073-2020v13i22an6105.pdf
- Size:
- 795.63 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 out of 1 results
Loading...
- Name:
- license.txt
- Size:
- 718 B
- Format:
- Item-specific license agreed upon to submission
- Description:
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Centra energetických jednotek pro využití netradičních zdrojů energie (9370)
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Centra energetických jednotek pro využití netradičních zdrojů energie (9370)
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals