Acoustic and mechanical testing of commercial cocoa powders
Loading...
Downloads
2
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis
License
Abstract
In the present study, commercial cocoa powders with different cocoa fat contents were studied. It was found that the cocoa powders' flow patterns were of a cohesive to highly cohesive characters. It was demonstrated, that the powders of higher crystalline structure were less flowable compared to the ones with the more amorphous ones. It was observed by SEM that the studied cocoa powders of higher cocoa fat content and the ones with the dietary fibers content (sample 2) exhibited more amorphous structure. The predominantly smooth surface structure of the higher fat content cocoa powder allowed its higher dense packing, triggering the decreased sound absorption typical for non-porous materials as quantified by NRC of 0.289 (sample 1, 100 mm material height) and 0.227 (sample 3) to 0.182 (sample 2). The latter conclusions were also supported by the observed increase of the structural mechanical stiffness of the freely poured powder bed of high cocoa fat amorphous powders, as resulting in the increasing magnitude of the K-l of 12.83 MPa (sample 1, 100 mm material height) and 19.29 MPa (sample 3) to 37.82 MPa (sample 2). Melting temperatures of the samples were determined by DSC. Results were directly corresponded to the cocoa butter content. The highest enthalpy of fusion (Delta H (m)) of (23.32 +/- 0.21) J/g was obtained for the highest cocoa butter containing sample 2 (of 20-22 wt. %). Obtained values of Delta H (m) for samples 1 and 2 were of (12.38 +/- 0.20) J/g and (10.27 +/- 0.17) J/g. T-p (melt) for reversing heat flow was ranging from (30.16 +/- 0.10) degrees C to (32.28 +/- 0.10) degrees C indicating the melting of stable beta polymorph. The melting peaks observed at distinct temperatures in the non-reversing heat flow patterns were indicating melting of the unstable alpha and metastable beta' and stable beta cocoa butter polymorphic forms.
Description
Citation
International Journal of Food Properties. 2022, vol. 25, issue 1, p. 2184-2197.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry hydromechaniky a hydraulických zařízení / Publications of Department of Hydrodynamics and Hydraulic Equipment (338)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry hydromechaniky a hydraulických zařízení / Publications of Department of Hydrodynamics and Hydraulic Equipment (338)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals