Investigation on evolutionary algorithms powered by nonrandom processes

dc.contributor.authorZelinka, Ivan
dc.contributor.authorLampinen, Jouni
dc.contributor.authorŠenkeřík, Roman
dc.contributor.authorPluháček, Michal
dc.date.accessioned2018-03-26T11:30:35Z
dc.date.available2018-03-26T11:30:35Z
dc.date.issued2018
dc.description.abstractInherent part of evolutionary algorithms that are based on Darwin's theory of evolution and Mendel's theory of genetic heritage, are random processes since genetic algorithms and evolutionary strategies are used. In this paper, we present extended experiments (of our previous) of selected evolutionary algorithms and test functions showing whether random processes really are needed in evolutionary algorithms. In our experiments we used differential evolution and SOMA algorithms with functions 2ndDeJong, Ackley, Griewangk, Rastrigin, SineWave and StretchedSineWave. We use n periodical deterministic processes (based on deterministic chaos principles) instead of pseudo-random number generators (PRGNs) and compare performance of evolutionary algorithms powered by those processes and by PRGNs. Results presented here are numerical demonstrations rather than mathematical proofs. We propose the hypothesis that a certain class of deterministic processes can be used instead of PRGNs without lowering the performance of evolutionary algorithms.cs
dc.description.firstpage1791cs
dc.description.issue6cs
dc.description.lastpage1801cs
dc.description.sourceWeb of Sciencecs
dc.description.volume22cs
dc.identifier.citationSoft Computing. 2018, vol. 22, issue 6, p. 1791-1801.cs
dc.identifier.doi10.1007/s00500-015-1689-2
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.urihttp://hdl.handle.net/10084/125359
dc.identifier.wos000426761200006
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesSoft Computingcs
dc.relation.urihttps://doi.org/10.1007/s00500-015-1689-2
dc.rights© Springer-Verlag Berlin Heidelberg 2015cs
dc.subjectevolutionary algorithmscs
dc.subjectpseudo-random numberscs
dc.subjectdeterministic chaoscs
dc.subjectdeterministic number seriescs
dc.titleInvestigation on evolutionary algorithms powered by nonrandom processescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: