Comparison of active-set and gradient projection-based algorithms for box-constrained quadratic programming

dc.contributor.authorCrisci, Serena
dc.contributor.authorKružík, Jakub
dc.contributor.authorPecha, Marek
dc.contributor.authorHorák, David
dc.date.accessioned2020-11-27T11:09:06Z
dc.date.available2020-11-27T11:09:06Z
dc.date.issued2020
dc.description.abstractThis paper presents on four chosen benchmarks an experimental evidence of efficiency of active-set-based algorithms and a gradient projection scheme exploiting Barzilai-Borwein-based steplength rule for box-constrained quadratic programming problems, which have theoretically proven rate of convergence. The crucial phase of active-set-based algorithms is the identification of the appropriate active set combining three types of steps-a classical minimization step, a step expanding the active set and a step reducing it. Presented algorithms employ various strategies using the components of the gradient for an update of this active set to be fast, reliable and avoiding undesirable oscillations of active set size.cs
dc.description.firstpage17761cs
dc.description.issue23cs
dc.description.lastpage17770cs
dc.description.sourceWeb of Sciencecs
dc.description.volume24cs
dc.identifier.citationSoft Computing. 2020, vol. 24, issue 23, p. 17761-17770.cs
dc.identifier.doi10.1007/s00500-020-05304-w
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.urihttp://hdl.handle.net/10084/142430
dc.identifier.wos000583096300003
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesSoft Computingcs
dc.relation.urihttp://doi.org/10.1007/s00500-020-05304-wcs
dc.rightsCopyright © 2020, Springer-Verlag GmbH Germany, part of Springer Naturecs
dc.subjectquadratic programmingcs
dc.subjectactive setcs
dc.subjectgradient projectioncs
dc.titleComparison of active-set and gradient projection-based algorithms for box-constrained quadratic programmingcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: