Removing 65 years of approximation in rotating ring disk electrode theory with physics-informed neural networks
| dc.contributor.author | Chen, Haotian | |
| dc.contributor.author | Smetana, Bedřich | |
| dc.contributor.author | Novák, Vlastimil | |
| dc.contributor.author | Zhang, Yuanmin | |
| dc.contributor.author | Sokolov, Stanislav V. | |
| dc.contributor.author | Kätelhön, Enno | |
| dc.contributor.author | Luo, Zhiyao | |
| dc.contributor.author | Zhu, Mingcheng | |
| dc.contributor.author | Compton, Richard G. | |
| dc.date.accessioned | 2025-02-20T09:19:33Z | |
| dc.date.available | 2025-02-20T09:19:33Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | The rotating Ring Disk Electrode (RRDE), since its introduction in 1959 by Frumkin and Nekrasov, has become indispensable with diverse applications in electrochemistry, catalysis, and material science. The collection efficiency (N) is an important parameter extracted from the ring and disk currents of the RRDE, providing valuable information about reaction mechanism, kinetics, and pathways. The theoretical prediction of N is a challenging task: requiring solution of the complete convective diffusion mass transport equation with complex velocity profiles. Previous efforts, including by Albery and Bruckenstein who developed the most widely used analytical equations, heavily relied on approximations by removing radial diffusion and using approximate velocity profiles. 65 years after the introduction of RRDE, we employ a physics-informed neural network to solve the complete convective diffusion mass transport equation, to reveal the formerly neglected edge effects and velocity corrections on N, and to provide a guideline where conventional approximation is applicable. | cs |
| dc.description.firstpage | 6315 | cs |
| dc.description.issue | 24 | cs |
| dc.description.lastpage | 6324 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 15 | cs |
| dc.identifier.citation | Journal of Physical Chemistry Letters. 2024, vol. 15, issue 24, p. 6315-6324. | cs |
| dc.identifier.doi | 10.1021/acs.jpclett.4c01258 | |
| dc.identifier.issn | 1948-7185 | |
| dc.identifier.uri | http://hdl.handle.net/10084/155762 | |
| dc.identifier.wos | 001243965800001 | |
| dc.language.iso | en | cs |
| dc.publisher | American Chemical Society | cs |
| dc.relation.ispartofseries | Journal of Physical Chemistry Letters | cs |
| dc.relation.uri | https://doi.org/10.1021/acs.jpclett.4c01258 | cs |
| dc.rights | © 2024 The Authors. Published by American Chemical Society | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.title | Removing 65 years of approximation in rotating ring disk electrode theory with physics-informed neural networks | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry chemie a fyzikálně-chemických procesů / Publications of Department of Chemistry and Physico-Chemical Processes (651)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry chemie a fyzikálně-chemických procesů / Publications of Department of Chemistry and Physico-Chemical Processes (651)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals