Exploring deep learning methods for computer vision applications across multiple sectors: Challenges and future trends
| dc.contributor.author | Ganesh, Narayanan | |
| dc.contributor.author | Shankar, Rajendran | |
| dc.contributor.author | Mahdal, Miroslav | |
| dc.contributor.author | Murugan, Janakiraman Senthil | |
| dc.contributor.author | Chohan, Jasgurpreet Singh | |
| dc.contributor.author | Kalita, Kanak | |
| dc.date.accessioned | 2024-06-06T09:10:50Z | |
| dc.date.available | 2024-06-06T09:10:50Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Computer vision (CV) was developed for computers and other systems to act or make recommendations based on visual inputs, such as digital photos, movies, and other media. Deep learning (DL) methods are more successful than other traditional machine learning (ML) methods in CV. DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization, object detection, and face recognition. In this review, a structured discussion on the history, methods, and applications of DL methods to CV problems is presented. The sector-wise presentation of applications in this paper may be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV. This review will provide readers with context and examples of how these techniques can be applied to specific areas. A curated list of popular datasets and a brief description of them are also included for the benefit of readers. | cs |
| dc.description.firstpage | 103 | cs |
| dc.description.issue | 1 | cs |
| dc.description.lastpage | 141 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 139 | cs |
| dc.identifier.citation | Computer Modeling in Engineering & Sciences. 2023. | cs |
| dc.identifier.doi | 10.32604/cmes.2023.028018 | |
| dc.identifier.issn | 1526-1492 | |
| dc.identifier.issn | 1526-1506 | |
| dc.identifier.uri | http://hdl.handle.net/10084/152687 | |
| dc.identifier.wos | 001109078200001 | |
| dc.language.iso | en | cs |
| dc.publisher | Tech Science Press | cs |
| dc.relation.ispartofseries | Computer Modeling in Engineering & Sciences. 2023. | cs |
| dc.relation.uri | https://doi.org/10.32604/cmes.2023.028018 | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | neural network | cs |
| dc.subject | machine vision | cs |
| dc.subject | classification | cs |
| dc.subject | object detection | cs |
| dc.subject | deep learning | cs |
| dc.title | Exploring deep learning methods for computer vision applications across multiple sectors: Challenges and future trends | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry automatizační techniky a řízení / Publications of Department of Control Systems and Instrumentation (352)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry automatizační techniky a řízení / Publications of Department of Control Systems and Instrumentation (352)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals