Energy-efficient distributed federated learning offloading and scheduling healthcare system in blockchain based networks
| dc.contributor.author | Mohammed, Mazin Abed | |
| dc.contributor.author | Lakhan, Abdullah | |
| dc.contributor.author | Abdulkareem, Karrar Hameed | |
| dc.contributor.author | Zebari, Dilovan Asaad | |
| dc.contributor.author | Nedoma, Jan | |
| dc.contributor.author | Martinek, Radek | |
| dc.contributor.author | Kadry, Seifedine | |
| dc.contributor.author | Garcia-Zapirain, Begoña | |
| dc.date.accessioned | 2024-03-12T12:51:23Z | |
| dc.date.available | 2024-03-12T12:51:23Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Many disease detection and prevention applications in digital healthcare systems are widely used but often focus only on prediction and classification, ignoring processing performance and data privacy issues. The study investigates the Energy-Efficient Distributed Federated Learning Offloading and Scheduling Healthcare Systems in Blockchain-Based Networks problem for healthcare applications. In order to solve the problem, the study presents the Energy-Efficient Distributed Federated Learning Offloading and Scheduling (EDFOS) system in blockchain based networks. EDFOS consisted of different schemes such as energy efficient offloading and scheduling and meet the quality of services (QoS) of applications during performing in the system. Simulation results show that EDFOS reduces power consumption by 39%, training and testing time by 29%, and resource leakage and deadlines by 36% compared to existing healthcare systems. The EDFOS platform is an effective solution for addressing the issues of power consumption and data privacy in healthcare applications. | cs |
| dc.description.firstpage | art. no. 100815 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 22 | cs |
| dc.identifier.citation | Internet of Things. 2023, vol. 22, art. no. 100815. | cs |
| dc.identifier.doi | 10.1016/j.iot.2023.100815 | |
| dc.identifier.issn | 2543-1536 | |
| dc.identifier.issn | 2542-6605 | |
| dc.identifier.uri | http://hdl.handle.net/10084/152326 | |
| dc.identifier.wos | 001056598900001 | |
| dc.language.iso | en | cs |
| dc.publisher | Elsevier | cs |
| dc.relation.ispartofseries | Internet of Things | cs |
| dc.relation.uri | https://doi.org/10.1016/j.iot.2023.100815 | cs |
| dc.rights | © 2023 Elsevier B.V. All rights reserved. | cs |
| dc.subject | energy-efficient | cs |
| dc.subject | EDFOS | cs |
| dc.subject | framework | cs |
| dc.subject | healthcare | cs |
| dc.subject | deadline | cs |
| dc.subject | patients | cs |
| dc.title | Energy-efficient distributed federated learning offloading and scheduling healthcare system in blockchain based networks | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
Files
License bundle
1 - 1 out of 1 results
Loading...
- Name:
- license.txt
- Size:
- 718 B
- Format:
- Item-specific license agreed upon to submission
- Description:
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Publikační činnost Katedry telekomunikačních technologií / Publications of Department of Telecommunications (440)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Publikační činnost Katedry telekomunikačních technologií / Publications of Department of Telecommunications (440)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals