Investigation on unconventional synthesis of astroinformatic data classifier powered by irregular dynamics

dc.contributor.authorKojecký, Lumír
dc.contributor.authorZelinka, Ivan
dc.contributor.authorPrasad, Awadhesh
dc.contributor.authorVantuch, Tomáš
dc.contributor.authorTomaszek, Lukáš
dc.date.accessioned2018-11-07T13:10:11Z
dc.date.available2018-11-07T13:10:11Z
dc.date.issued2018
dc.description.abstractThis paper discusses the mutual combination of the unconventional algorithm (in this case evolutionary algorithms), deterministic chaos and modeling on real data from astrophysics. Analytical programming with selected evolutionary algorithm is used to synthesize suitable models. The main attention in this paper is focused on various chaotic generators, which are used instead of classical pseudo-random number generators. Chaotic generators are used in conjunction with a special case - a generator based on a strange non-chaotic attractor. The performance of all chaotic and non-chaotic based generators is then mutually compared at the end.cs
dc.description.firstpage63cs
dc.description.issue4cs
dc.description.lastpage77cs
dc.description.sourceWeb of Sciencecs
dc.description.volume33cs
dc.identifier.citationIEEE Intelligent Systems. 2018, vol. 33, issue 4, p. 63-77.cs
dc.identifier.doi10.1109/MIS.2018.043741323
dc.identifier.issn1541-1672
dc.identifier.issn1941-1294
dc.identifier.urihttp://hdl.handle.net/10084/132861
dc.identifier.wos000447947100005
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Intelligent Systemscs
dc.relation.urihttps://doi.org/10.1109/MIS.2018.043741323cs
dc.subjectSOMAcs
dc.subjectanalytic programmingcs
dc.subjectbe starscs
dc.subjectbig datacs
dc.subjectevolutionary synthesiscs
dc.subjectstellar spectra classificationcs
dc.titleInvestigation on unconventional synthesis of astroinformatic data classifier powered by irregular dynamicscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: