On systems of independent sets

dc.contributor.authorJahoda, Pavel
dc.contributor.authorJahodová, Monika
dc.date.accessioned2015-07-21T10:37:11Z
dc.date.available2015-07-21T10:37:11Z
dc.date.issued2015
dc.descriptionNefunkční DOIcs
dc.description.abstractThe classical probability that a randomly chosen number from the set {n ∈ N : n ≤ n0} belongs to a set A ⊆ N can be approximated for large number n0 by the asymptotic density of the set A. We say that the events are independent if the probability of their intersection is equal to the product of their probabilities. By analogy we define the independence of sets. We say that the sets are independent if the asymptotic density of their intersection is equal to the product of their asymptotic densities. In the article is described a generalisation of one of the criteria of independence of sets and one interesting case in which sets are not independentcs
dc.description.firstpage33cs
dc.description.issue1cs
dc.description.lastpage44cs
dc.description.sourceWeb of Sciencecs
dc.description.volume65cs
dc.identifier.citationMathematica Slovaca. 2015, vol. 65, issue 1, p. 33-44.cs
dc.identifier.doi10.1515/ms-2015-0004
dc.identifier.issn0139-9918
dc.identifier.issn1337-2211
dc.identifier.urihttp://hdl.handle.net/10084/106829
dc.identifier.wos000355583100004
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofseriesMathematica Slovacacs
dc.relation.urihttp://www.degruyter.com/view/j/ms.2015.65.issue-1/ms-2015-0004/ms-2015-0004.xmlcs
dc.relation.urihttp://dx.doi.org/10.1515/ms-2015-0004
dc.titleOn systems of independent setscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: