Implementation of K-means segmentation algorithm on Intel Xeon Phi and GPU: Application in medical imaging

dc.contributor.authorJaroš, Milan
dc.contributor.authorStrakoš, Petr
dc.contributor.authorKarásek, Tomáš
dc.contributor.authorŘíha, Lubomír
dc.contributor.authorVašatová, Alena
dc.contributor.authorJarošová, Marta
dc.contributor.authorKozubek, Tomáš
dc.date.accessioned2017-01-23T08:38:28Z
dc.date.available2017-01-23T08:38:28Z
dc.date.issued2017
dc.description.abstractThe paper presents speed up of the k-means algorithm for image segmentation. This speed up is achieved by effective parallelization. For parallel implementation we focus on Many Integrated Core (MIC) architecture with Intel Xeon Phi coprocessors. The MIC implementation is compared with GPU, CPU and sequential implementation. To demonstrate parallel capabilities of k-means algorithm, segmentation of CT images of human body are used. Results of this work will be used for development of the software application for automatic 3D model reconstruction of heart and liver.cs
dc.description.firstpage21cs
dc.description.lastpage28cs
dc.description.sourceWeb of Sciencecs
dc.description.volume103cs
dc.identifier.citationAdvances in Engineering Software. 2017, vol. 103, p. 21-28.cs
dc.identifier.doi10.1016/j.advengsoft.2016.05.008
dc.identifier.issn0965-9978
dc.identifier.issn1873-5339
dc.identifier.urihttp://hdl.handle.net/10084/116801
dc.identifier.wos000390966700004
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesAdvances in Engineering Softwarecs
dc.relation.urihttp://dx.doi.org/10.1016/j.advengsoft.2016.05.008cs
dc.rights© 2016 Elsevier Ltd. All rights reserved.cs
dc.subjectimage processingcs
dc.subjectk-meanscs
dc.subjectlivercs
dc.subjectcomputed tomographycs
dc.subjectCT imagescs
dc.subjectGPUcs
dc.subjectMICcs
dc.subjectIntel Xeon Phics
dc.subjectcoprocessorscs
dc.titleImplementation of K-means segmentation algorithm on Intel Xeon Phi and GPU: Application in medical imagingcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: