Non-monotone projected gradient method in linear elasticity contact problems with given friction
| dc.contributor.author | Pospíšil, Lukáš | |
| dc.contributor.author | Čermák, Martin | |
| dc.contributor.author | Horák, David | |
| dc.contributor.author | Kružík, Jakub | |
| dc.date.accessioned | 2020-11-25T10:44:21Z | |
| dc.date.available | 2020-11-25T10:44:21Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | We are focusing on the algorithms for solving the large-scale convex optimization problem in linear elasticity contact problems discretized by Finite Element method (FEM). The unknowns of the problem are the displacements of the FEM nodes, the corresponding objective function is defined as a convex quadratic function with symmetric positive definite stiffness matrix and additional non-linear term representing the friction in contact. The feasible set constraints the displacement subject to non-penetration conditions. The dual formulation of this optimization problem is well-known as a Quadratic Programming (QP) problem and can be considered as a most basic non-linear optimization problem. Understanding these problems and the development of efficient algorithms for solving them play the crucial role in the large-scale problems in practical applications. We shortly review the theory and examine the behavior and the efficiency of Spectral Projected Gradient method modified for QP problems (SPG-QP) on the solution of a toy example in MATLAB environment. | cs |
| dc.description.firstpage | art. no. 8674 | cs |
| dc.description.issue | 20 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 12 | cs |
| dc.identifier.citation | Sustainability. 2020, vol. 12, issue 20, art. no. 8674. | cs |
| dc.identifier.doi | 10.3390/su12208674 | |
| dc.identifier.issn | 2071-1050 | |
| dc.identifier.uri | http://hdl.handle.net/10084/142427 | |
| dc.identifier.wos | 000583086900001 | |
| dc.language.iso | en | cs |
| dc.publisher | MDPI | cs |
| dc.relation.ispartofseries | Sustainability | cs |
| dc.relation.uri | http://doi.org/10.3390/su12208674 | cs |
| dc.rights | © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | contact problems | cs |
| dc.subject | linear elasticity | cs |
| dc.subject | tresca friction | cs |
| dc.subject | SPG-QP | cs |
| dc.subject | quadratic programming | cs |
| dc.title | Non-monotone projected gradient method in linear elasticity contact problems with given friction | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Original bundle
1 - 1 out of 1 results
Loading...
- Name:
- 2071-1050-2020v12i20an8674.pdf
- Size:
- 557.5 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 out of 1 results
Loading...
- Name:
- license.txt
- Size:
- 718 B
- Format:
- Item-specific license agreed upon to submission
- Description:
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Publikační činnost Katedry matematiky / Publications of Department of Mathematics (230)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Publikační činnost Katedry matematiky / Publications of Department of Mathematics (230)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals