New BFA method based on attractor neural network and likelihood maximization

dc.contributor.authorFrolov, Alexander A.
dc.contributor.authorHúsek, Dušan
dc.contributor.authorPolyakov, Pavel Y.
dc.contributor.authorSnášel, Václav
dc.date.accessioned2014-08-26T13:33:10Z
dc.date.available2014-08-26T13:33:10Z
dc.date.issued2014
dc.description.abstractWhat is suggested is a new approach to Boolean factor analysis, which is an extension of the previously proposed Boolean factor analysis method: Hopfield-like attractor neural network with increasing activity. We increased its applicability and robustness when complementing this method by a maximization of the learning set likelihood function defined according to the Noisy-OR generative model. We demonstrated the efficiency of the new method using the data set generated according to the model. Successful application of the method to the real data is shown when analyzing the data from the Kyoto Encyclopedia of Genes and Genomes database which contains full genome sequencing for 1368 organisms.cs
dc.description.firstpage14cs
dc.description.lastpage29cs
dc.description.sourceWeb of Sciencecs
dc.description.volume132cs
dc.identifier.citationNeurocomputing. 2014, vol. 132, p. 14-29.cs
dc.identifier.doi10.1016/j.neucom.2013.07.047
dc.identifier.issn0925-2312
dc.identifier.issn1872-8286
dc.identifier.urihttp://hdl.handle.net/10084/105777
dc.identifier.wos000334480500003
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesNeurocomputingcs
dc.relation.urihttp://dx.doi.org/10.1016/j.neucom.2013.07.047cs
dc.rightsCopyright © 2013 Elsevier B.V. All rights reserved.cs
dc.subjectBoolean factor analysiscs
dc.subjectneural network associative memorycs
dc.subjectinformation gaincs
dc.subjectlikelihood-maximizationcs
dc.subjectbars problemcs
dc.subjectgenome data analysiscs
dc.titleNew BFA method based on attractor neural network and likelihood maximizationcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: