Chaotic sub-dynamics in coupled logistic maps
Loading...
Downloads
0
Date issued
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Location
Signature
Abstract
We study the dynamics of Laplacian-type coupling induced by logistic family fμ(x) = μx(1 − x), where
μ ∈ [0, 4], on a periodic lattice, that is the dynamics of maps of the form
F (x, y) = ((1 − ε)fμ(x) + εfμ(y), (1 − ε)fμ(y) + εfμ(x))
where ε > 0 determines strength of coupling. Our main objective is to analyze the structure of attractors
in such systems and especially detect invariant regions with nontrivial dynamics outside the diagonal.
In analytical way, we detect some regions of parameters for which a horseshoe is present; and using
simulations global attractors and invariant sets are depicted.
Description
Subject(s)
coupled map lattices, logistic map, topological entropy, attractor
Citation
Physica D: Nonlinear Phenomena. 2016, vol. 335, p. 45-53.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals