Chaotic sub-dynamics in coupled logistic maps

dc.contributor.authorLampart, Marek
dc.contributor.authorOprocha, Piotr
dc.date.accessioned2016-11-11T09:29:32Z
dc.date.available2016-11-11T09:29:32Z
dc.date.issued2016
dc.description.abstractWe study the dynamics of Laplacian-type coupling induced by logistic family fμ(x) = μx(1 − x), where μ ∈ [0, 4], on a periodic lattice, that is the dynamics of maps of the form F (x, y) = ((1 − ε)fμ(x) + εfμ(y), (1 − ε)fμ(y) + εfμ(x)) where ε > 0 determines strength of coupling. Our main objective is to analyze the structure of attractors in such systems and especially detect invariant regions with nontrivial dynamics outside the diagonal. In analytical way, we detect some regions of parameters for which a horseshoe is present; and using simulations global attractors and invariant sets are depicted.cs
dc.description.firstpage45cs
dc.description.lastpage53cs
dc.description.sourceWeb of Sciencecs
dc.description.volume335cs
dc.identifier.citationPhysica D: Nonlinear Phenomena. 2016, vol. 335, p. 45-53.cs
dc.identifier.doi10.1016/j.physd.2016.06.010
dc.identifier.issn0167-2789
dc.identifier.issn1872-8022
dc.identifier.urihttp://hdl.handle.net/10084/116367
dc.identifier.wos000385603600005
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesPhysica D: Nonlinear Phenomenacs
dc.relation.urihttp://dx.doi.org/10.1016/j.physd.2016.06.010cs
dc.rights© 2016 Elsevier B.V. All rights reserved.cs
dc.subjectcoupled map latticescs
dc.subjectlogistic mapcs
dc.subjecttopological entropycs
dc.subjectattractorcs
dc.titleChaotic sub-dynamics in coupled logistic mapscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: